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Recently, using two-photon imaging it has been found that the movement ofB andT cells in lymph nodes
can be described by a random walk with persistence of orientation in the range of 2 minutes. We interpret this
new class of lymphocyte motility data within a theoretical model. The model considers cell movement to be
composed of the movement of subunits of the cell membrane. In this way movement and deformation of the
cell are correlated to each other. We find that, indeed, the lymphocyte movement in lymph nodes can best be
described as a random walk with persistence of orientation. The assumption of motility induced cell elongation
is consistent with the data. Within the framework of our model the two-photon data suggest thatT andB cells
are in a single velocity state with large stochastic width. The alternative of three different velocity states with
frequent changes of their state and small stochastic width is less likely. Two velocity states can be excluded.
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I. INTRODUCTION

The method of two-photon imaging has opened up a new
way to generate data on cell motility in vivo. This method
allows tracking of cell movement in living organs with only
minimum disturbance. Therefore, the behavior of the cells
can be considered to be representative of real in vivo behav-
ior. Recently, this method has been applied toB cells sBCd
andT cells sTCd in lymph nodes of micef1,2g. Lymph nodes
are prominent secondary lymphoid organs in which the in-
teraction of lymphocytes and antigen presenting cells is or-
ganised. The motility of lymphocytes within secondary lym-
phoid organs is still a matter of controversy. BC and TC
express and regulate chemokine receptorsf3–5g and may
therefore move according to chemotaxis or haptotaxis. In
contrast to this hypothesis, two-photon data seem to favor a
random walk of lymphocytes at least in the outer region of
lymph nodes including primary folliclesf6g.

We aim to develop a model that describes lymphocyte
migration in secondary lymphoid organs and revisit the in-
terpretation of the results found with two-photon imaging. As
the data show a stochastic variation of cell motility we are
restricted to the class of stochastic models. Assuming that
cell shape and motility are closely interlinked with each
otherf7g, the cell cannot be represented by a point but has to
be spatially resolved to some extent. Thus, within lattice de-
scriptions, the lattice has to be of higher resolution than the
cell diameter. Alternatively, one may introduce flexible cell
objects as was done inf8–10g, and which will be discussed
separately.

The extended Potts model is the classical approach for the
description of cells at a subcellular level, i.e., including prop-

erties such as cell shape, surface molecules, organelles, or
other internal structuresf11g. It is derived from the Ising
model and extends the latter to multiple spin states. A cell is
defined by all volume elements that are in the same spin
state. Movements, or more general changes on the lattice, are
driven by a Boltzmann law at some biological temperature.
The contributions to the energy term in the Boltzmann-
exponential define the cellular dynamics and interactions. In
slightly more general terms the Potts model can be described
as a potential-based thermodynamical model.

A cell subunit has to adopt the spin states of its neighbor
point for cell movement. In this way every cell movement is
intrinsically correlated with a change of cell volume. On
longer time scales these volume fluctuations are averaged
out, at least if a volume conserving potential is included in
the energy entering the Boltzmann law. A peculiarity of this
concept is that cells composed of one volume element only
are in some sense immobile: Either the cell with a single
volume element disappears by a spin flip or it doubles its
volume. It is inferred that if the Potts model is to be applied
to cells with small numbers of subunits, additional rules have
to be included.

In the following we discuss an alternative model architec-
ture which intrinsically includes the one- and the multi-
subunit limit within one concept. This opens up the possibil-
ity of determining the lattice constant by the size of the
smallest cell in the system under consideration, which then
would be described by a single volume element. The CPU
load could be limited in this way when it is not the substruc-
ture of the cells that is interesting but their differences in
volume.

As cells are widely incompressible objects we aim to use
a mechanism of cell movement that conserves the total vol-
ume of the cellsif no growth or shrinking is intendedd. In our
new model, denoted by the Greek word for tissuehyphasma,
in the following, all reaction kinetics are formulated as reac-
tion rates and actions are taken according to probabilistic
decisions. In contrast to the potential-based Potts model the
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physical movement of the cells is formulated in terms of
forces acting on subunits of the cell.

In this paper we will first introduce the model concept in
Sec. II and then apply it to lymphocytes. We will analyze and
interpret two-photon motility data in the framework ofhy-
phasmain Sec. III.

II. DEFINITION OF THE MODEL

A. General considerations

The new model for cell motility aims at capturing cell
deformations and displacement in an agent-based model con-
cept. Single subunit agent-based models are excluded for
three reasons: First, the cell volume is not adequately repre-
sented. Second, cell deformations can not be explicitly rep-
resented. Finally, the velocity distributions as found in the
two-photon imaging experiments cannot be reproduced. The
last point follows from the fact that displacements have been
recorded at intervals of 10 minutes: The lattice resolution is
determined by the cell volume for single subunit models. At
that resolution the cells have to overcome a large distance
within a single time step for every movement. In order to
respect the average velocity such large distance movements
have to be rare events, thus leading to a rather discontinuous
velocity distributionsin contrast to the experimental resultsd.
Thus a correct description of cell volume and velocity distri-
bution exclude each other in a single subunit agent-based
model.

In the two-photon imaging experiment cell tracks were
projected onto a two-dimensional plane. The authors found
that most cells “preferentially moved parallel to the overly-
ing capsule”f1g. Therefore, as a first step, two-dimensional
simulations can be considered as a good approximation for
these data. The influence of the third dimension will be ana-
lyzed in future work.

The model hyphasma is based on rather simple assump-
tions, thus following a reductionalist point of view. Cell ob-
jects are represented by the cell volume, the cell polaritypW
sdefined in Sec. II Bd, a list of cell subunits, and internal
velocity states. The cell volume determines the number of
cell subunitsN according to the space resolutionDx. The
velocity statev̄ is translated into probabilities of subunit
movementspmove in the direction of the cell polaritypW ac-
cording to the time resolutionDt scompare Sec. II Bd.

Cell velocity states are observable in experiments but they
are difficult to relate to internal cell properties. The velocities
vW i of the subunits as observed in the model results, however,

may be related to physical forcesFW i according to the over-
damped force equation:

vW i = FW i/gi , s1d

wheregi represents friction andi denotes the subunit under
consideration. In this picture the velocities of the subunits
are the result of a force balancesthat may include reshaping
cell forces, forces due to active cell motility towards a
chemokine, etc.d. The gi arise as a result of a number of
processes, for example, the viscosity of the cytosol within a
cell, and adhesion between cells. Note, however, that a force

balance equation for the cell subunits is not necessarily a
correct description of active processes of deformation and
reshaping of cells. Thus the interpretation of cell subunit
velocities in terms of forces has to be considered as an ap-
proximation to more complex internal processes within the
cell. In the present investigation we do not make use of this
interpretation and focus on the movement of free cells, thus
neglecting chemotaxis and adhesion to other cells. Thus we
directly use the cell velocity as found in experiment as input
for the model.

In the following we base the kinetics of the cell subunits
on two types of velocity:sid undirected active movement
with persistence of orientation, andsii d cell reshaping.

B. Active cell movement

The normed orientation vectorpW determines the direction
of the active movement of a cell. This vector represents an
overall polarity of the cell which in reality is a complex
function of internal organisation of the cytoskeleton as well
as localized signal pathways.pW may be considered as an
approximation for the direction in which protrusions are de-
veloped by the cell that induce cell movement. The orienta-
tion vector is assumed to change randomly with a probability
per time step that represents the persistence timeDtpersist, i.e.,
the inverse rate of change of orientation.

Each individual cell has at least one active velocity state
v̄active determining the probability of subunit movement in
directionpW . The active movement of the cell is performed by
the following proceduressee Fig. 1d: The barycenter of the

cell bW is virtually shifted in the direction ofpW to the border of

the cell bWvirtual. Then every subunit representing a border
point of the cell is moved in random order towards free lat-
tice points near the virtual barycenterfsee Eq.s2dg. When a
border subunit which is not a direct neighbor of its target
point se.g., a subunit on the back of the celld is moved, this
procedure corresponds to a shift of the cytosol through the
whole cell. Note that in the present model all subunits carry
the same properties. It is only when the subunits store other
properties, such as for example integrin expression, that an
explicit copy algorithm of properties has to be used. When
the movement of a border subunit would cause the subunits
of the cell to become disconnected the movement is sup-
pressed. For example, a subunit in the middle of a tail with a
width of one subunit only cannot be moved.

Note that the border subunits are not necessarily moved to

the target point nearest tobWvirtual because this would lead to
movements reflecting the lattice symmetry. Instead, we allow
for deviations from the nearest target point and in this way
reduce anisotropic effects on the cell movement. Within the
set of free neighbor points of the cell, i.e., possible target
points, only those points are considered which are within a
distancedi of the virtual barycenter, where

di ø usdfar − dneard + dnear, s2d

with
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u =
exps−

dfar−dnear

adnear
d + b

1 + b exps−
dfar−dnear

adnear
d

, s3d

and dfar and dnear are, respectively, the distance of furthest
and nearest point to the virtual barycenter within the set of
free neighbor points of the cell. The target point is chosen
randomly within this reduced set of points. In the limit of
a→0 and b=0 only the target point nearest to the virtual
barycenter is considered. Large values ofa and b reduce
anisotropy but also limit cell elongation. We chose the small-
est values such that anisotropic effects are not detectable by
eye, leading toa=b=0.2. However, the model behavior is
robust against changes of these values as long as both values
remain in the range between 0.1 and 0.4.

The tolerated deviations from the target point nearest to
the virtual barycenter as described by Eq.s2d are designed to
be adaptive to the deformation state of the cell. For large cell
deformationssi.e.,dfar@dneard u→b holds, whileu=1 for an
ideal spherical cellsi.e., dfar=dneard. However, the exact

choice of Eq.s2d is arbitrary. Alternative descriptions with
similar general properties are not distinguishable within the
accuracy of the model.

The displacement of subunits is stopped when either no
border subunit remains to be moved or the barycenter of the
cell has been displaced by one lattice constant. In the new
state the cell has reorganized its membrane and thus changed
its shape. Thereby the total volumesthe cell area in two
dimensionsd of the cell is conserved. Thus the movement of
the cell barycenter is realized by subunit rearrangements, and
inherentlycouples the cell movement to its deformation.

The velocity state of the cell determines the rate with
which the whole procedure is started, which translates into a
movement probability

pactive=
1

h

Dt

Dx
v̄active, s4d

with Dt andDx being the time and space resolution, respec-
tively. Note that instead of moving all subunits within a
single time step their movement may be distributed onh
ù1 time steps. Then only a fraction 1/h of the subunits is
moved per time step. This parametersbeside the lattice con-
stantDxd changes the stochastic variability of the cell move-
ment.

It is worth mentioning that the algorithm for rearrange-
ment of the cell subunits does not belong to the class of
Markov processes ifN.1: Within every time step the sub-
units of a cell which have already moved determine which
subunits may still be moved. However, all other processes
are Markov-like. For example, the change of orientation de-
pends neither on the time passed since the last change nor on
the present or previous orientation.

Within this model framework every cell optionally can
embed different velocity states that are characterized by dif-
ferent mean active velocitiesv̄i. They are adopted randomly
and the velocity state is switched with a probability corre-
sponding to a persistence time of velocity statesDtvi

. The
latter can be constant for all states or may be shorter for
states with higher velocities. The assumption of more than
one velocity state for the active movement of cells will be
further discussed and compared to two-photon imaging data
in Sec. III.

C. Cell reshaping

The second ingredient of the cell motility model concerns
the cell shape stabilityf7g. During the procedure of active
cell movement all forces that reshape the cell towards a
sphere, i.e., hydrostatic pressure, reduced actin filament as-
sembly, actomyosin contraction, or membrane surface ten-
sion, are ignored. All these forces are included in a single
reshaping force. This overall elastic force drives the subunits
of an elongated cell back to the current barycenter and pro-
motes a spherical shape. Note that we do not attempt to
describe the intracellular processes that underlie this total
rearrangement in detail. The concentration of all these
mechanisms into a single force on the cell subunits has to be
considered as a phenomenological approximation.

FIG. 1. A schematic description of cell movement by subunit
rearrangement around a virtual barycenter. Immobile cell subunits
are shown in light grey, border subunits that may be moved in
white, putative free target points in dark grey, and other points in
black. The current barycenter is denoted by the dot, and the cell
polarity by the arrow attached to it. The arrow points the position of
the virtual barycenter at the border of the cell. The starting position
is shown on the top left. A random white subunit is chosen and
moved towards the target point nearest to the virtual barycenter
sopen arrow upper paneld. The result is shown in the lower panel.
Note that cell subunits that are neighbors of the target point are
removed from theto movelist sturning them from white to light
greyd. In the upper right panel another randomswhited subunit is
moved towards the target point nearest to the virtual barycenter
sopen arrowd. In that case the moved subunit is at the back of the
cell and all cytosol subunits in between are shifted correspondingly.
The result is shown in the lower left panel. The procedure is re-
peatedsthe open arrow in the lower left panel shows a possible next
stepd until all white subunits have been moved or removed from the
to movelist. A possible final constellation with a recalculated bary-
center is shown in the lower right panel.
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In complete analogy to the active cell movement, cell
reshaping is represented by a velocityvshapeof the cell sub-
units, which transforms into a cell border subunit movement
probability pshapeaccording to Eq.s4d with h=1. Subunits
that are far from the barycenter are preferentially moved, i.e.,
if di is the distance of subuniti to the barycenter, then the
subunit is moved with probability

pi = pshape
diNborder

o
j=1

Nborder

dj

. s5d

All Nborder border subunits are moved in random order. It is
worth emphasizing that the results presented below are found
also for the simpler assumptionpi =pshape.

The target point of every moved subunit is the free lattice
point nearest to the current barycenter. Note that in contrast
to the case of active movement no deviation is toleratedfi.e.,
a=0.01 andb=10−8 in Eq. s3dg. The reshaping forces should
vanish for a spherical cell. We assume the reshaping process
to scale with the elongation of the cell,estd=dfarstd / rcell, as a
spring. Heredfarstd denotes the distance of the subunit far-
thest from the barycenter at timet and rcell the radius of the
hypothetical spherical cell with the same volumeN. We as-
sume that the reshaping force saturates for long elongations,
setting an upper limit to the velocity of the intracellular
mechanisms that reorganize the cell shape. This is described
by a Hill equation with Hill coefficient 1:

vshapestd = − v̄shape
estd − 1

estd + Ke − 2
, s6d

with v̄shapethe asymptotic subunit velocity andKe the elon-
gation that corresponds to half of the maximum reshaping
force. The direction of reshaping forces is defined by the
difference vector between the subunit under consideration
and the barycenter. Equations6d enters the simulation via the
subunit movement probability calculated with Eq.s4d for
vshapestd andh=1.

We would like to make the additional remark that the
reshaping velocity may be interpreted as corresponding to an
elastic force where all forces acting on the border subunits of

the cell according to Eq.s1d are summed up toFW elastic. The
elastic force per surface areaA is the tensile stresss of the
cell which can be related to the elasticity modulusE:

s =
uFW elasticu

A
= E

Dxmax− rcell

rcell
= Ese − 1d. s7d

If these properties are measured for the cell type under con-
sideration, then the reshaping velocityv̄shapemay be calcu-
lated, thus providing a consistency check.

D. Space resolution

On the conceptual level the model is fully formulated in
terms that are independent of the time or space resolution. In
particular, a formulation in terms of subunit velocities in-
stead of diffusion constants is essential in this context. Using
diffusion constants to define cell motility effectively intro-

duces a persistence of the random walk proportional to the
lattice constantDx. Therefore the diffusion constant would
have to be interpreted relative to the lattice resolution. This
ambiguity is avoided by relying on velocities. However, an
effective diffusion constant can be attributed to the move-
ment by interpreting the persistence timeDtpersist of the ori-
entation of the cellstogether with the mean velocity of active
movementv̄actived as lattice constantDxpersistof a virtual lat-
tice, in which the orientation is changed in every time step:

Dpersist; ppersist
Dxpersist

2

2dDtpersist

= v̄active
Dtpersist

Dxpersist

Dxpersist
2

2dDtpersist
= v̄active

2 Dtpersist

2d
, s8d

with d the dimension of the lattice.
The stochastic diversity of the results nevertheless de-

pends on the spatial resolution for small numbers of sub-
units. Within that diversity we can test that the results are
independent of the lattice constantDx by performing in silico
experiments in a regime where the stochastic width is prima-
rily due to the probabilistic nature of the model and not due
to small numbers of subunits.

III. RESULTS

The application of this model to specific cell types in-
volves a small number of parameters only. Given the size of
the cells the lattice constantDx determines the number of
cell subunitsN that represent the cell in the model. The cell
properties to be determined for every cell type includesid the
number of velocity states for active movement and the cor-
responding mean velocitiesv̄active, sii d the persistence time
Dtpersist for every active velocity state,siii d the reshaping ve-
locity v̄shape, andsivd the elongation corresponding to the half
maximum reshaping forceKe. The artificial parameterh that
distributes the active cell movement on different time steps is
used to adapt the stochastic variability of the model behavior.
The natural choice ish=1, i.e., all subunits are moved within
the same time step. The parametersa and b, which reduce
anisotropic effects, are considered to be model intrinsic and
will be kept constant. There are no further parameters in the
model.

A. A purely stochastic interpretation of the data

In the following we see if the in vivo measurement of TC
and BC motility in lymph nodesf1g can be repeated in silico
using our model. The resolution of the lattice is set toDx
=0.4 mm. This implies TC and BC to consist ofN=241 sub-
units. As for the in vivo case, cell velocities are measured at
intervals of 10 seconds in silicosnote that the time interval is
relevant and changes the general properties of the measure-
ment f12gd. Time courses have been registered for 12 min-
utes. A total of 3277 measurements for TC and 3251 for BC
have been carried out in vivof1g. Thus the number of cells to
be observed is determined to be 46. The mean velocity in
silico is fixed to the mean value measured in vivo ofv̄active

TC

=10.8mm/min for TC and tov̄active
BC =5.1 mm/min, slightly
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below the measured mean value for BCssee below for ex-
planationd. The orientation persistence of the cells has been
found in vivo to be between 1 and 3 minutes. Thus the value
of Dtpersist=2 minutes is assumed in silico. The reshaping
force, and the elongation corresponding to the half maximum
reshaping force are chosen such that the shape index is in the
correct range. The shape index is defined as the ratio of the
axis length in direction of cell polarity to the axis length
perpendicular to it. Note that the direction of cell polarity
does not necessarily coincide with the long axis. However, it
turns out that this is a good approximation to the ratio of the
real longest to shortest axis. This infersv̄shape

TC =2 mm/min
and Ke

TC=2.5 for TC, while for BC,v̄shape
BC =4 mm/min and

Ke
BC=1.3.

1. Velocity time course

The time courses of single representative TC and BC as
found by the model are shown in Fig. 2. The time course
shows maximum velocity around 25mm/min for TC and
around 14mm/min for BC swith single higher peak veloci-
tiesd, as found in vivosseef1g, Fig. 2C and Dd. TC and BC
are rarely found at rest. In silico this is related to random

movements of some subunits around the optimal shape even
when little or no active movement occurs. This always in-
duces small displacements of the barycenter.

The stochastic nature of the in silico experiment is also
the origin of the changes between fast and slow active move-
ments of the cells. Thus the diversity of observed cell veloci-
ties is a pure result of stochasticity and not of active changes
of cell states.

2. Time course of shape index

The time courses of the shape indexsdefined as ratio of
long to short axisd are shown for TC and BC in Fig. 2scen-
tral panelsd. TC show strong alterations between elongated
and sphericalsshape index of 1d states. The shape index of
BC shows fewer alterations and is bounded by the value of 2.

The range of the shape index is determined by both the
assumed mean velocity of the cells and the reshaping forces.
The mean velocities are determined by the velocity distribu-
tion found by two-photon imaging. The difference in mean
velocity between TC and BC reduces BC elongations con-
siderably. Thus the lymphocyte motility already determines,
to a large degree, cell shape stability. However, in vivo two-

FIG. 2. The in silico time courses of velocity, shape index, and their productfdefined in Eq.s9dg for TC sleft panelsd and BC sright
panelsd. A single active velocity state is assumeds10.8mm/min for TC and 5.1mm/min for BCd. The spatial resolution is 0.4mm.
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photon data still show less elongation for BC. The larger
reshaping forces in BC that have been assumed here account
for that difference.

The width of the shape index alterations are—as for the
velocity time course—a result of stochasticity only.

3. Correlation of velocity and shape index

The correlation of cell velocity and cell elongation is in-
trinsic to the model as cell migration is realized by the move-
ment of its subunits. We calculate this correlationc̄ for single
time courses according to

c̄ = o
i=1

3266
„dstid − d̄…„vstid − v̄…

Fo
j=1

3266

„dstjd − d̄…2 o
k=1

3266

„vstkd − v̄…2G1/2
, s9d

whered̄ andv̄ denote the mean values of the shape index and
velocity, respectively. The correlation fulfills the condition
−1ø c̄ø1. Values near 1 or −1 correspond to strong positive
or negative correlation of velocity and elongation, respec-
tively, while values near 0 are adopted in case of uncorrela-
tion. The time course of the product in the numerator is
shown in Fig. 2slower panelsd. This value is not the corre-
lation itself but a measure of the contribution of a specific
cell to the correlation at every time point. The product is
dominantly positive and reflects the coupling of cell motility
to cell elongation. Interestingly, negative products in most
cases occur after changes of orientation of the cells. The cells
have to repolarize after changes of orientation such that the
directions of movement and of elongation are uncorrelated
for a short period. This is even more pronounced the more
the cells are elongated. Indeed, the correlation isc̄=30% for
TC and 54% for BC in the case shown in Fig. 2. More
generally the average over 46 simulations isc̄=32% ±9%
for TC and 58% ±9% for BC. Thus, the reorientation phases
reduce the correlation found for rather elongated TC com-
pared to more spherical BC.

4. Velocity distribution

The velocities measured in silico in the time courses of 46
TC and BC are summed up and presented in a histogram as
average counts per cell including one standard deviationssee
Fig. 3sad,sbdd. The in vivo results are reproduced for com-
parisonssee black barsd. According to the assumption of a
single velocity state we find smooth velocity distributions for
both cell types. The width of the TC distribution is larger
compared to that for BC and corresponds well to the width
found in vivo for both TC and BC. Note that the width has
not been fitted. We usedh=1, i.e., all subunits of a cell are
moved within the same time step for both cell types. Thus,
the resulting width is a prediction of the model and can be
interpreted as the natural stochastic width that results from
the values used for cell velocity and reshaping forces.

The maximum of the velocity distributionsaveraged per
celld is larger for BC than for TC. A higher maximum value
appears to result in a smaller width of the velocity distribu-
tion for BC. The values can be compared quantitatively to

the total sum of all in vivo observed velocitiessseef1g, Fig.
2C and Dd by multiplying the average counts with the total
number s46d of considered cells. At the maximum of the
velocity distribution this leads to 515±138 counts for TC
and 667±138 for BC. The in vivo values of 622 and 778,
respectively, lie within one standard deviation.

FIG. 3. For the in silico experiment in Fig. 2, the velocity and
shape index distributions are averaged over all 46 considered TC
fpanelssad and scdg and BC fpanelssbd and sddg. The error bars
correspond to one standard deviation and the stars to the total mean
values observed in silico. The dark grey bars show the in vivo
resultssf1g, Fig. 2C and D; data kindly provided by Mark Miller
and Michael Cahaland.
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The mean velocity of TC is found to be 10.4mm/min and
corresponds to the value assumed for active movement of
10.8mm/min. This is in no way self-evident and depends on
the relation of cell movement induced by reshaping forces
and active movement. The assumed value determines only
the latter. Thus we can conclude that only a minor part of TC
movement is due to reshaping forces acting on deformed
cells. For BC the mean velocity is found to be 6.9mm/min
which compares with 6.4mm/min in vivo. This value is
larger than the value assumed for active movement of
5.1 mm/min. This points to a larger fraction of BC move-
ment as a result of cell reshaping forces.

For a more quantitative comparison with the experimental
data we calculate a deviation factor

sN
2 =

1

N
o
i=1

N
nsvid − nsvi

expd
nsvi

expd
, s10d

wherensvid andnsvi
expd are the counts at velocityvi in silico

and in vivo, respectively, andN is the total number of counts.
This leads tos25

2 sTCd=0.54 ands23
2 sBCd=0.38 for the T

cells and B cells in Fig. 3, respectively. For both cell types
the deviation factor is dominated by the velocity counts at
10 mm/min. Simulations with more than a single velocity
state of the cells will be compared with these values.

5. Shape index distribution

In analogy to the velocity distribution, a shape index dis-
tribution is evaluated on the basis of 46 TC and BCssee Fig.
3scd,sddd. The shape index distribution is similar to the veloc-
ity distribution. However, due to the larger reshaping forces
in BC the model predicts a shift of the BC distribution to
smaller elongations, and substantially larger peak elongation
for TC than for BC. The average shape indices are 2.4 and
1.4 for TC and BC, respectively.

6. Cell tracking and territory explored

The tracks of all cells are followed and superimposed on a
single figuressee Fig. 4d. The territory explored by the TC
and BC in silico is consistent with the one found in vivossee
superimposed tracks of all cells inf1g, Fig. 3A and Bd. Note
that single TC reach a distance of about 100mm from their
original position while most BC do not reach a distance of
50 mm from their original position.

7. The mean displacement of lymphocytes

The displacement of TC and BC from their starting posi-
tion is followed with time. The mean displacement of the 46
cells is plotted against the square root of time including one
standard deviationssee Fig. 5d. For both cells we find ap-
proximately a straight line, agreeing with in vivo results. The
mean displacement in silico aftert=12 minutessi.e., t1/2

=3.5d of x=56 mm for TC andx=25 mm for BC is in excel-
lent agreement with the values found in vivossee dotted line
in Fig. 5d. From these values we can deduce an underlying
diffusion coefficientDobserved

TC/BC =x2/ s2dtd which gives

Dobserved
TC = 65

mm2

min
, Dobserved

BC = 13
mm2

min
. s11d

Note that according to Eq.s8d this corresponds to persistence
times of orientationDtpersist of 2.2 and 2.0 minutes for TC
and BC, respectively, i.e., the value assumed in the simula-
tion. This supports the consistency of the model results.

The lag time before the onset of the linear behavior in Fig.
5 appears to be longer in silico than in vivo. In silico the lag
time is identical to the assumed persistence time, as it should
be. The in vivo data show shorter directional memory but the
same persistence times are observed. On longer time scales
in vivo displacements are slightly smaller than expected
from the straight line. Therefore it is likely that the rather
short lag time in vivo is an artifact.

8. Concluding remarks

The adjustment of reshaping and active movement veloci-
ties are sufficient within our model to reproduce the main TC

FIG. 4. Superimposed tracks of 46 TCsupper paneld and BC
slower paneld. Data from the same in silico experiment as in Fig. 2.
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and BC properties as found with two-photon measurement.
No further assumptions are needed. An important conclusion
of the in silico experiment is that no switch of the internal
state of the cell is necessary in order to produce the alter-
ations in the single cell velocity time course as well as in the
shape index time course. Thus the model-intrinsic stochastic
width of the cell movement is sufficient in order to generate
the diversity of velocities observed experimentally. This re-
sult is underlined by the fact that the stochastic diversity of

TC and BC differ in vivo, which turns out to be reproduced
in silico without tuning the stochastic width.

Note, however, that in vivo a velocity near the mean ve-
locity remainsunderpopulatedfor TC and BCssee Fig. 3,
black barsd, while in silico the velocity distribution is mono-
tonic on both sides of the maximum. For BC the in vivo
value lies within the statistical width, whereas for TC it is
included within 3 standard deviations of the in silico experi-
ment and, therefore, this has to be considered as a disagree-
ment between in vivo and in silico results. This calls into
question the in silico assumption of a single velocity state.
Instead one may think of a superposition of more distinct
velocity states that are adopted by the cell according to some
unknown environmental change, or simply randomly. This
will be further elaborated below.

B. Changing spatial resolution

The same in silico experiments are repeated with half spa-
tial resolution ofa=0.8 mm, i.e., cells with 60 subunits. The
results for BC are shown in Fig. 6. Here the same parameter
set sv̄shape=4 mm/min, Ke=1.3, andv̄active=5.1 mm/mind as
for higher resolutionsDx=0.4 mmd has been used. The re-
sulting characteristic data are similar to the high resolution
case: mean velocity of 7.0mm/min, mean shape index of
1.6, summed velocity histogram with 722±175 counts at the
maximum, and mean displacement after 12 minutes of
23 mm. The deviation factor according to Eq.s10d is s23

2

=0.43.
This result confirms that the model has been formulated in

terms independent of the lattice resolution. However, a major
precondition of this result is that the parameters are chosen
in such a way that the stochasticity of the result is mainly
due to the probabilistic nature of the model and not due to
stochastic noise because of small subunit numbers. In the
case of BC this is ensured by a relatively large reshaping
force. In contrast the reshaping force of TC is relatively
small. Therefore, a corresponding experiment with lower
resolution for TC requires the parameterKe to be changed
from 2.5 to 1.3 to obtain the same result.

For higher resolutions the results remain independent of
the resolution because the stochastic noise due to small sub-
unit numbers becomes negligiblesdata not shownd.

C. T cells with two velocity states

In order to try to capture the in vivo behavior which is
suggestive of two velocity peaks, we introduce two velocities
for active movementsv̄active=16, 8mm/mind. The width of
the velocity distribution has to be considerably reduced. The
model’s intrinsic stochasticity can be changed by distributing
every cell movement on severalsh=100d time steps. The
change of velocity states is correlated with the change of
polarity, thus coupling cell velocity and reorientationssee
Fig. 7, upper paneld. A less populated mean velocity is ob-
served.

If both processes, reorientation and change of velocity
state, are decoupled from each other, a similar result is found
ssee Fig. 7 lower paneld. Obviously, it is not necessary to
couple the dynamics of orientation and velocity state in order

FIG. 5. The progress of displacement from the initial position
averaged over TCsupper paneld and BCslower paneld. The shaded
area corresponds to one standard deviationssdd in silico. The data
stem from the same in silico experiment as in Fig. 2 and are com-
pared to the in vivo resultssdotted line, data fromf1g, Fig. 3D,
kindly provided by Mark Miller and Michael Cahaland.
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to find a depopulated mean velocity in the velocity distribu-
tion as experimentally observed.

The total width of the velocity distribution is incorrect for
very high and very low velocities which, in contrast to the in
vivo results, are not sufficiently populated in the in silico
experiment. This is affirmed by the deviation factors25

2

=0.75 and 0.74 for both simulations in Fig. 7, respectively.
The contribution from the critical 10mm/min count is re-
duced by half. However, the errors related to high velocities
are considerably increased. This is a result of the small sto-
chastic width that had to be assumed in order to explain the
depopulated mean velocity in the in vivo velocity distribu-
tion. Thus the depopulated mean velocity and the counts of
very high and low velocities as observed in vivo rule out the

hypothesis that TC switch between two velocity states.

D. T cells with three velocity states

A similar in silico experiment can be done with three
velocity states. The assumption of equal persistence times for
all three states leads to more pronounced high velocities in
contradiction to the two-photon data. However, reducing the
persistence time of the highest velocity state by a factor of 2
leads to a more reasonable scenariossee Fig. 8d. The devia-
tion factor fsee Eq.s1dg s25

2 =0.52 is of similar quality as
compared to the single velocity state scenario. The contribu-
tions to this factor are smoothly distributed over the whole
velocity range. Similar results are found when both high ve-

FIG. 6. The BC behavior with lower resolution of 0.8mm and the same parameter set as in Figs. 2–5. In vivo data kindly provided by
Mark Miller and Michael Cahalan.
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locity states are assumed to have shorter persistence com-
pared to the low velocity state. Note that the depopulated
average velocity is not reflected in the shape index. The latter

displays a rather large width that is induced by three different
velocity states, each corresponding to a different average
elongation.

The persistence of velocity states has to be reduced to 0.5
minutes in order to obtain the same frequency of velocity
changes as in vivo. Representative results with persistence
times that are too long are shown in Fig. 9. Note the small
stochastic variations around the mean velocity attributed to
the various velocity states of the cell. If only one velocity
state is assumed the correct frequency of velocity changes is
based on the stochastic width of the cell velocities only. In
the case of more velocity states, the stochastic width is re-
duced and the velocity changes are to be interpreted as active
changes of the velocity with some frequency.

An analogous analysis holds true for BC, which is not
shown here as it does not add new insights.

IV. CONCLUSIONS

We have presented the new modelhyphasmafor cell mo-
tility and shaping. Cell shape and movement are reduced to
the dynamics of the cell subunits that represent the cell mem-
brane. The dynamics are described by two contributions:sid
Rearrangement of subunits with respect to a virtually shifted
barycenter of the cellsactive movementd and sii d rearrange-
ment of the subunits with respect to the actual barycenter
sreshaping forcesd. The subunit movement is realized accord-
ing to heuristic rules that are interpretable as physical quan-
tities.

FIG. 7. The velocity distribution of TC in an in silico experi-
ment assuming two active velocity states of 16 and 8mm/min. The
switch of velocity states is correlated with the change of orientation
in the upper panel, but not correlated in the lower panel. In vivo
data kindly provided by Mark Miller and Michael Cahalan.

FIG. 8. TC in an silico experiment with three active velocity statess24, 15, and 6mm/mind. The switches between velocity states are
uncorrelated with orientation changes. The persistence of the velocity states is 0.5 min for both low velocity states and 0.25 min for the
highest velocity state. The right panels show the distributions per cell averaged over 46 TC. In vivo data kindly provided by Mark Miller and
Michael Cahalan.
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The comparison of the model results with experiment re-
vealed that these two ingredients, i.e., active movement and
reshaping forces, are sufficient in order to describe lympho-
cyte motility data as found by two-photon imaging. Assum-
ing a single velocity state of lymphocytes describes all the
data for TC and BC. Thus the model confirms that the move-
ment of lymphocytes in secondary lymphoid organs can be
described as a random walk with persistence of orientation of
2 minutes.

The dynamics of the shape index found in experiment are
in large parts inferred by the difference in mean velocities
between TC and BC. This reflects the model assumption that
cell movements are performed by cell subunit displacements,
i.e., by cell deformation. However, in order to quantitatively
reproduce the data within the model the reshaping forces had
to be doubled for BC with respect to TC. This can neither be
a difference in hydrostatic pressure nor in surface tension of
the membrane. The difference has to be interpreted in terms
of different cytoskeleton dynamics in TC and BC.

However, these results ignore a depopulated mean veloc-
ity in the velocity distribution which is observed in vivo for
TC. On first sight the data suggest that lymphocytes ran-
domly switch between two velocity states. However, assum-
ing two velocity states in silico, the model results clearly
imply a contradiction between the depopulation of the mean
velocity and the total width of the distribution. This contra-
diction can only be resolved by assuming an asymmetric
distribution of cell velocities around both mean velocities. It
is difficult to imagine a mechanism that breaks the symmetry
of the stochastic width, so we consider this scenario to be
rather unlikely.

The depopulated mean velocity observed experimentally
can, however, be explained by the assumption of three or
more velocity states. The velocity cell distribution is repro-
duced when the highest velocity state has shorter persistence
times compared to both low velocity states. More generally,
the persistence time of all velocity states has to be decoupled
from the persistence time of the orientationsthus implying
two different mechanisms for orientation and velocity state
regulationd. This is clearly inferred by the variability of the
time courses of velocity and shape index: The assumption of
three velocity states is possible only if the stochastic width is
considerably reduced. The in vivo variability of the time
courses is then restored in silico by a more frequent change
of velocity states.

The latter point implies different interpretations of the
width of the velocity distribution: Either, the depopulated
mean velocity is ignored and a single velocity state assumed.
Then the variability of the velocity time courses is a result of
stochastic width only. Alternatively, the depopulated mean
velocity is explained by at least three velocity states of lym-
phocytes. Then the variability of the velocity time course is a
result of an active change of the internal state of the cell
swith only small stochastic perturbationsd.

In real secondary lymphoid tissue, lymphocytes move in a
labyrinth of obstacles. We have therefore tested the effect of
obstacles on the observed cell motility. The result is that the
stochastic width of the velocity distribution is considerably
enhanced. For reasonable densities of obstacles the velocity
distribution becomes dominated by intermediate velocities.

This rather intuitive result favors the scenario that TC and
BC move in a single velocity state with large stochastic
width. A depopulated mean velocity in the velocity distribu-
tion becomes rather difficult to reproduce. The purely sto-
chastic interpretation of the velocity distribution is further
supported by the observation that the width of the velocity
distribution scales identically in vivo and in silico for single
velocity states. In contrast, the stochastic width has to be
fitted separatelysusing the parameterhd for TC and BC
when a three velocity state is considered. However, it re-
mains to be clarified in further experiments whether a de-
populated mean velocity represents a real property of lym-
phocytes.

The present in silico experiment enforces the interpreta-
tion of lymphocyte migration as active and undirected move-
ment with orientation persistence in the range of minutesf6g.
However, we have also seen that a width of a velocity dis-
tribution may either be a result of stochastic variation or of
determined active changes of internal states. This raises the
question of whether the straight line found for the relation of
the distance reached and the square-root of time really points
to a persistent random walk. Alternatively, one may think of
it to be the result of a specific and more complex chemotactic
movementf13g. Indeed, not only the expression of chemok-
ine receptors but also their pronounced expression on the
leading edge of migrating cells has been observed in both TC
and BC f14,15g. The requirements for chemokine sources
that lead to a seemingly random walk of lymphocytes in
lymph nodes remain to be worked out in further in silico
investigations.

FIG. 9. TC in an silico experiment with three active velocity
states of 25, 15, and 5mm/min that switch uncorrelated with ori-
entation and that persist for 2 min. The changes of velocity state are
clearly reflected in the velocity time course.
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